Lichen and tree symbiotic relationship activities

Lichens and trees | Space for life

lichen and tree symbiotic relationship activities

Lichens are an example of symbiotic mutualism which is one of the four main types of symbiotic Samples of lichens collected from rocks or tree bark (If lichens are available in the school Copies of attached Student Activity Sheet. • Internet. Many grow on the trunks of trees. Harmony is seen in the cooperative relationship of two very different the activities of the green alga in tripartite lichens. There is some evidence to suggest that the lichen symbiosis is. The mosses that hang from the trees drip slowly. The streams run Like the slime molds, lichens are a hybrid; a symbiotic relationship between an algae and a fungus. These tiny birds use little bits of lichen in their nest-building activities.

There are a number of native plants which are endangered, in which attempts at growing them from seeds and cuttings at NTBG have not been very good.

A few years ago, while Drs. While inoculation of VAM fungi did greatly improve the survival of the young plants, it would not be the whole answer to their problems.

Some species of native Hawaiian plants that were given inoculated with and without VAM fungi are shown on Figs. Left plant with and right without mycorrhiza. Left plant without and right with mycorrhiza, respectively. Orchid Mycorrhizae Orchid mycorrhiza is endomycorrhizal and have fungal partners that are saprotrophic or pathogenic species of Basidiomycota, but a some are ectomycorrhizae, e.

All orchids must form mycorrhizae. In most plants, the seed contains a food supply that will feed the embryo, until germination occurs, at which time the plant becomes photosynthetic and can produce its own food. However, orchid seeds are very minute and contain a very small food reserve for the embryo. This food supply is usually depleted by the time that the first few cell divisions of the embryo has occurred.

During this critical period, the fungal symbiont colonizes the plant shortly after seed germination and form characteristic, coiled hyphae within the cortical cells of the root. The hyphae in the host cells collapse or are digested by the host that will supply the embryo with its carbon source and vitamins until it is able to photosynthesize.

Unlike other mycorrhizal fungi, orchid mycorrhizal fungi can also digest organic materials, from the surrounding environment of the orchid, into glucose, ribose and other simple carbohydrate and these nutrients are translocated into the orchid to support their growth.

The relationships that orchid species have with the mycorrhizal fungi are variable and is dependent on their nutritional needs. Those orchids that are photosynthetic still retain their fungal partners, but it is not clear as to what role it is playing.

However, the achlorophyllous orchids will require it even as adult plants. In these species the associate fungus forms a tripartate relationship, where the fungus also forms a relationship with a photosynthetic plant and channel its nutrient to the orchid.

The fungus will also supply both plants with inorganic nutrients. Ericaceous Mycorrhizae The mycorrhiza formed in this group is between fungi in the Ascomycota, and more rarely in the Deuteromycota, and species in the families Epacridaceae, Ericaceae and Pyrolaceae.

Three subcategories are recognized, arbutoid, ericoid and monotropoid. We will briefly cover the latter two groups. Arbutoid Mycorrhiza This group forms associations with plants that are trees and shrubs that belong to the genera Arbutus madroneArctostaphylos manzanita and Arctous alpinus mountain bearberry.

They have characteristics that are both ecto- and endo-mycorrhizae: There is a formation of an external mantle of mycelium that forms a hartig's net, as in ectomycorrhiza, but intracelllar penetration of cortical cells occurs as in endomycorrhiza. Fungi forming this association are members of the Basidiomycota.

What is a Lichen? | The British Lichen Society

Ericoid Mycorrhizae Plants having this group of mycorrhiza are commonly found in acidic, peatland soils and include members of genera Calluna heatherRhododendron, Azaleas and Vaccinium blueberriesof the family Ericaceae.

Ericoid mycorrhizae have evolved in association with plants that are continually stressed by factors within the soil. The soil is typically extremely acid, peatland soil, low in available minerals because mineralization is inhibited.

Plants with ericoid mycorrhizae seem to have a high tolerance to these stresses and there is good reason to believe that this is related to the presence of the mycorrhizal fungus and that the survival of the host is dependent upon the fungus. The mycorrhizal association is most similar to that of an endomycorrhiza because fungus growth is extensive in the root cortex. The fungus penetrates the cell wall and invaginates plasmalemma and is filled with coiled hyphae, like those in orchid mycorrhizae.

No mantle is formed. Infected cells are fully packed with fungal hyphae. Fungus species are mostly members of the Ascomycota, in the genus Hymenoscyphus. Cross section of ericoid root, showing coiled hyphae. The host cell dies as the association disintegrates, thereby restricting the functional life, i.

Monotropoid Mycorrhizae One of the characteristics that we normally attribute to plants is that they have chlorophyll and can produce their own food through the process of photosynthesis. However, this is not true of all plants. The Monotropaceae and Pyrolaceae are two families of plants that are achlorophyllous. Thus, plants in these families are more dependent upon their mycorrhizal partners than plants which can carry out photosynthesis.

Monotropa uniflora left from http: The means by which food is obtained by these plants is the same as in achlorophyllous orchids. However, morphologically, they are very different. The achlorophyllous host has mycorrhizae roots that appear to be formed by an ectomycorrhizal fungus, but the epidermal and outer cortical cells are penetrated by the fungus, as in endomycorrhizal plants.

The fungus also forms an ectomycorrhizal relationship with a tree which is capable of photosynthesis. So, as in the case of the epiphytic orchids, the photosynthetic tree indirectly provides carbohydrates to these achlorophyllous plants, as well as to the fungus.

Symbiosis

Both hosts probably obtain their mineral requirements through the fungus. Lichens The most well known example of a symbiosis between fungi and plants is the lichen, if you will allow me to include algae as plants.

The concept of what constitutes a lichen has broaden significantly in the last 25 years to include some species of mushrooms, slime molds, and some members of the Zygomycota.

  • Lichens and trees

However, we will discuss lichens in the traditional sense, as an association between a fungus and an alga that develops into a unique morphological form that is distinct from either partner.

The fungus component of the lichen is referred to as the mycobiont and the alga is the phycobiont. Because the morphology of lichen species was so distinct, they were once thought to be genetically autonomous until the Swiss Botanist Simon Schwendener described their dual nature in Prior to that time, because of the morphology of many of the "leafy" species of lichens, they were considered to be related to bryophytes, i.

Although, lichens are now known to be composite organisms, they are still named for the fungus part of the association since that is the prominent part of the lichen thallus. A thallus is an old botanical term used to describe "plants" that do not have leaves, stems and roots, and its origin goes back to a time when only two kingdoms were recognized in classifying organisms, i. Prior toorganisms such as algae, bacteria and fungi, were included in the plant kingdom.

InWhitaker, proposed a five kingdom system that was used for many years, but may soon also become outdated. Although, this term is antiquated, it is still used to describe the "bodies" of algae, fungi and of course lichens. The only group of plants, in which we still use the term thallus, to refer to the plant body, are the bryophytes. Although the lichen thallus is composed of an algal and fungal component, lichens are not studied in mycology or phycology that part of botany that studies algae.

Instead, they are studied in their own discipline, lichenology. There are relatively few lichen researchers. Of these most are systematists. As a result, there are still some basic questions concerning this symbiosis that are unanswered or at least up for debate.

One of the most basic questions, that has been asked since the discovery of the lichen symbiosis, concerns whether lichens represent a true mutualistic symbiosis or nothing more than a variation of a host-parasite relationship. There is evidence supporting both sides. That it represented a mutualistic symbiosis, in which the alga was believed to contribute the food supply through photosynthesis, and the fungus protected the alga from desiccation, harmful solar radiation and provided the alga with water and inorganic nutrients, was postulated by Beatrix Potter, the writer and illustrator of Peter Rabbit, soon after Schwendener had determined the true nature of the lichen thallus.

In order to understand both sides of the issue, lets look at the morphology and anatomy of lichens. The Lichen Thallus In the traditional sense of lichens, their thallus can be artificially divided into four forms: Foliose Lichens Lichen thallus which is generally "leaf-like", in appearance and attached to the substrate at various points by root-like structures called rhizines.

Because of their loose attachment, they can easily be removed. These are the lichens which can generally be mistaken for bryophytes, specifically liverworts. It is possible, or even probable, that herbaria still contain lichens that have been mistakenly identified as liverworts. If we look at these a foliose lichen in longitudinal section, from top to bottom, we would be able to distinguished the following layers: Often composed of tightly interwoven mycelium, which gives it a cellular appearance.

This cellular appearance is referred to as pseudoparenchymatous. Composed of interwoven hyphae with the host algal cells. This is the ideal location for the algal cells. Beneath the upper cortex so that it receives the optimal amount of solar radiation, for photosynthesis, but not direct solar radiation which would be harmful. Composed of loosely interwoven mycelium.

Layer is entirely fungal. Usually same composition as the upper cortex and attached to the substrate by root-like structures called rhizines. The rhizines are entirely fungal, in origin, and serve to anchor it to the substrate.

lichen and tree symbiotic relationship activities

Thus, the foliose lichens also have what is referred to as a dorsiventral thallus, i. Sectional views, illustrating how the three thallus types of lichens differ. The entire lower surface is attached to the substrate. These lichens are so thin that they often appear to be part of the substrate on which they are growing.

The following link shows an image of several lichen thalli. Crustose species that are brightly colored often give the substrate a "spray-painted" appearance. The thallus has the upper cortex, algal and medullary layers in common with the foliose lichens, but does not have a lower cortex. The medullary layer attached directly to the substrate and the margins are attached by the upper cortex.

This type of lichen is tightly flattened to its substrate and the entire lower surface medulla is attached, making it impossible to remove the thallus from its substrate. Fruticose Lichens The thallus is often composed of pendulous "hair-like or less commonly upright branches finger-like.

The thallus is attached at a single point by a holdfast. In cross section, the thallus can usually be seen to be radially symmetrical, i. The layers that can be recognized are the cortex, algal layer, medullary layer, and in some species the center has a "cord" which is composed of tightly interwoven mycelium. Other species have a hollow center that lack this central cord. Fructicose lichen thallus is attached to its substrate at a single point, but finding that point is not that easy!

Biology of Lichens In looking at the anatomy of the lichen, it is obvious that there is interaction between the phycobiont and mycobiont, but what kind of interaction is occurring. One school of thou0ght is that the alga produces the food material and that the fungus protects alga from desiccation, high light intensities, mechanical injuries and provides it with water and minerals.

This is the reasoning that many introductory text books have adopted and they define a lichen as a mutualistic symbiosis. However, in studies that have been done that examines the alga-fungus interface, it can be clearly seen that haustoria, specialized feeding structures present in parasitic fungi, penetrate the alga cells. Thus, many lichenologist have defined this relationship as a controlled form of parasitism.

There is more evidence and I would like to go over some of these.

What is a Lichen?

Illustration of haustoria penetrating algal cells give evidence that the lichen symbiosis is really a controlled form of parasitism. Conditions outside these parameters will usually be fatal for most species of fungi and algae. However, lichens occur all over the world. They even occur in arctic and hot, dry desert areas where few organisms can live or even survive. Thus, the lichen is able to exploit habitats that few other organisms are able to utilize that seem likely to be the result of their mutualistic, symbiotic relationship.

Another experiment that demonstrates that lichens represent a mutualistic symbiotic relationship was carried out in the laboratory by Vernon Ahmadjian. Although, it is not difficult to separate the myco- and phycobiont components of the lichen, and grow them separately in the laboratory, putting the component back together is another story. For many years it was not possible to put the two together to reform the lichen thallus.

The reason for this was the method that was used in attempting to reform the lichen thallus. These types of media did not work. Ahmadjian reasoned that if the lichen represents a symbiosis, the reason that the relationship formed was because, in nature, neither one could obtain all the nutrients necessary for survival and that only after the two organisms interacted was it possible. Thus, Ahmadjian created a minimal medium, which would not support the growth of either the myco- or phycobiont, and inoculated them into that medium.

This method successfully reformed the lichen thallus, in the laboratory, for the first time. Although, it would appear that there is a great deal more evidence supporting the lichen thallus as a product of mutualistic symbiosis, there are still many who believe that the relationship is that of a balance parasitism that favors the mycobiont.

A Few Words on The Lichen Component Although there are approximately 13, species of lichens recognized, the number of taxonomic groups of fungi and algae that produce the lichen thallus are few.

Mycobionts In the traditional sense of lichens, which is how we are defining lichens, the fungal components are always in the Ascomycota, specifically in those groups that form their asci and ascospores in fruiting bodies.

The fungi involved in the lichen symbiosis are never found to be free-living in nature. Phycobiont Regardless of whether we are using the traditional or expanded definition of lichens, the algae involved in the association are the same.

lichen and tree symbiotic relationship activities

Of all the different species of algae that are known, only the divisions Chlorophyta "green" algae and Cyanophyta "blue-green" algae or Cyanobacteria are involved in lichen formation. The latter are actually bacteria rather than algae although they were classified as such once upon a time. Furthermore, within these divisions, only a few genera are involved in the lichen symbiosis.

Some genera, such as Trebouxia, are known to only occur in lichens and are not free-living, but there are also examples that are free-living. Economic Relevance Economically, lichens have little significance. Perhaps this is why there is so little interest in this group of organisms.

One way that they have been utilized is in the extraction of blue, red, brown or yellow dyes in the garment industry. Also, the indicator pigments used in litmus paper was also derived from lichens. Previously, we briefly mentioned lichens as a source of pharmaceutical compounds.

You can include some "folk" remedies in this category as well. They are also used in the cosmetic industry, in the making of perfumes and essential. Finally, some species have been used as food. One species, Lecanora esculenta, is a species that grows in the mountains near Israel and are typically blown free from their substrate.

Desert tribes grind up the lichen, dry it and mix it with dry meal to form a flour. It is postulated that this is the species lichen that is referred to as "Manna from Heaven" when Moses led the Hebrews across the desert during biblical time. One species, Cladonia rangiferina reindeer mossis fed upon by reindeers and cattle. This has led to the discovery that lichens readily absorb radioactive elements.

After open-air, atomic testing, both Alaskan Eskimos and Scandinavian Laplanders were found to have high levels of radioactive contamination, which they had absorbed from eating reindeer, which in turn ate lichens. Other Significant Uses for Lichens Lichens are conspicuously absent in and surrounding cities because many species are sensitive to pollution, especially to sulfur dioxide and flourine, which are common pollutants. For this reason, they have been commonly used as indicators of pollutants.

In urban areas, where lichen surveys have been carried out, the absence of certain indicator species is used as early warnings of decrease in air quality. Lichens also play a very significant role in nature.

They are the pioneers in rocky substrates, where there is no soil. Lichens break down the rocky substrate into soil and their decomposing thallus fertilize the newly produced soil, making it possible for the plant habitation.

Reproduction Reproduction of the lichen is entirely asexual. It may occur by soredia sing.: This is best seen in a sectioned lichen. The other means of asexual reproduction is by isidia sing.: In fact, a legacy of exclusion from accepted mycological research persisted until the s, despite their obvious affinities with non-lichen fungi. With the advent of molecular biology, the shared history of lichens and non-lichens has been elucidated and acceptedand we now know that the fungi that form lichens have evolved from many only distantly related lineages across the fungal tree of life, uniting them and their non-lichen relatives in the Kingdom Fungi.

Lichen fungi are a heterogeneous group; they are similar only ecologically, in that they share the nutritional strategy of gaining carbon from an internal symbiotic photosynthetic partner, the photobiont. In the study of lichens, the name and classification belongs to the fungal partner, which in most cases is the dominant member of the association, at least in terms of biomass. Lichen fungi have evolved independently several times within the mushroom-forming fungi and relatives the basidiomycetesbut much more commonly, from within the cup fungi the ascomycetes.

Probably more than ten distinct major lineages of fungi within the ascomycetes are lichenised. Current estimates suggest that one fifth of all known fungi and half of all ascomycetes are lichenised, with about 28, species worldwide.

As with most organisms, lichen fungi are most diverse and least studied in the tropics. For example, the genus Arthonia is comprised of a mix of lichenised and non-lichenised species and includes many which are specialist parasites, only found on one or a few closely-related host lichens.

Parasitism and mutualism

In a single genus, then, we have a case of lichen parasites evolving from lichen fungi! Other non-lichen fungi arose from lichenised ancestors, such as Stictis and Ostropa. Fungi are classified in part by the type of spore-producing structures they produce, with the cup fungi ascomycetes named for the open, cup-shaped structures which often bear the sexual spores of the fungi.

Not all ascomycetes have these cup-shaped structures, however, and, easily observed morphological characteristics like fruit type cup-like apothecia versus flask-shaped perithecia, for example cannot always be used to assess relationships. Unfortunately, this means that not all fungi sharing a single characteristic are likely to be related.

However, some order can be distilled. The bulk of lichen diversity belongs to the class including the well-known genera Lecanora, Cladonia, Parmelia and Peltigera Lecanoromycetes, or the Lecanora-groupwhere spores are borne mostly in open or cup-shaped fruits apothecia. This group of fungi is very old, estimated to have evolved during the Carboniferous period.

The very first lichens probably date back to before the origin of land plants, when most of the biodiversity of Earth was in the sea. Many Arthonia relatives also have open cup type fruits, but their development is quite different, giving a clue that they are not closely related to the Lecanora-group. Instead, they are more closely related to other ascomycetes that have flask-shaped spore-bearing structures perithecia. Similarly, for still other lichen groups, morphological similarities have been confirmed by molecular evidence to point to their widely disparate origins in the ascomycete tree of life.

For examples of these, students would be advised to visit the tropics, where the members of the Arthonia- Trypethelium- and Pyrenula- groups form conspicuous and sometimes colourful crusts.

In Britain, the smooth barked trees of the western districts are good places to see some of our Arthonia and Pyrenula species. Students of lichenology will probably not be surprised to read that lichen fungi can be difficult to identify, partly due to the paucity of morphological characters to go on, but also due to the repeated and independent evolution of such characters.

For example, the fruticose habit has evolved repeatedly within the Lecanora-group, but also within the distantly related Arthonia-group. Unrelated fungi repeatedly evolve similar morphologies to succeed under similar conditions, making morphological identification especially difficult in some groups. Lichen Photobionts Fungi are heterotrophic, meaning that, like animals, they require a carbon source to survive.

The lichen fungi share a common ecological strategy of hosting an internal population of photosynthetic cells, from which they obtain their carbon source in the form of simple sugars. These photosynthetic cells can either be green algae Chlorophyta or cyanobacteria or sometimes both, in which case the cyanobacteria are localised in distinct areas of the thallus.

As the photosynthetic partners come from divergent parts of the tree of life green plants vs bacteriathe term photobiont is used as collective term for any of them. The role of the photobiont in lichens is clear — to provide carbon in the form of simple sugars. These sugars are used by the fungi to maintain physiological functions, to grow, and reproduce. However, in the case of lichens with both green algae and cyanobacteria, the lichen gets an added nutrient input from the cyanobacteria in the form of fixed nitrogen.

Although lichens can probably access inorganic nitrogen from the atmosphere directly, it can be a limiting nutrient, so having an internal source can be an advantage especially in heavily leached environments.

Only about species of photobionts are commonly found across all known lichens, representing 4 main genera. The vast majority of photobionts are from the genus Trebouxia, followed by Trentopohlia both ChlorophytaNostoc and Scytonema both Cyanobacteria.